MÉTODO DE CUADRADOS MÍNIMOS – REGRESIÓN LINEAL.
Hemos enfatizado sobre la importancia de las representaciones gráficas y hemos visto la utilidad de las versiones linealizadas de los gráficos (X, Y) junto a las distintas maneras de llevar a cabo la linealización. A menudo nos confrontamos con situaciones en las que existe o suponemos que existe una relación lineal entre las variables X e Y.
Surge de modo natural la pregunta: ¿cuál es la relación analítica que mejor se ajusta a nuestros datos? El método de cuadrados mínimos es un procedimiento general que nos permite responder esta pregunta. Cuando la relación entre las variables X e Y es lineal, el método de ajuste por cuadrados mínimos se denomina también método de regresión lineal.
Observamos o suponemos una tendencia lineal entre las variables y nos preguntamos sobre cuál es lamejor recta:
y(x) = a x + b
Que representa este caso de interés. Es útil definir la función:
Que es una medida de la desviación total de los valores observados yi respecto de los predichos por el modelo lineal a x + b. Los mejores valores de la pendiente a y la ordenada al origen b son aquellos que minimizan esta desviación total, o sea, son los valores que remplazados en la Ec.(1) minimizan la funciónc2. Ec.(2). Los parámetros a y b pueden obtenerse usando técnicas matemáticas que hacen uso del cálculo diferencial. Aplicando estas técnicas, el problema de minimización se reduce al de resolver el par de ecuaciones:
No hay comentarios.:
Publicar un comentario